

EARTH OBSERVING SYSTEM MICROWAVE LIMB SOUNDER

MLS Instrument Operations Status Update

Dominick Miller

Jet Propulsion Laboratory
California Institute of Technology
Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.

Greenbelt, MD September 15, 2014

Overview

- Overall Status
- MLS Significant Events
- Trend Updates
- Longevity Concerns
- Operational Plans
- MLS Team Updates

Overall Instrument Status Mechanisms

All 3 MLS mechanisms continue to operate with no signs of life limiting behavior with over 12M scan cycles on the GHz mechanisms

- AAA temperature "blips" have been noted in recent years but, after a significant analysis, it has been determined that these are expected
- GMEB substitution for GMEA continues to perform perfectly
- THz mechanism has been flawless

Overall Instrument Status GHz Module

All MLS GHz science products continue to be produced 24/7

- MLS HCl and N2O products have been shifted from their original signal sources to alternate sources due to speculated HBT (transistor) issues which were identified and accepted as a prelaunch risk
- Using alternate signal sources does result in some degradation in the sensitivity and accuracy of these two products
- The HCl product was shifted from Band 13 to Band 14 in February 2006
- The N2O product was shifted from Band 12 to Band 3 in August 2013
- The next 2 slides detail how we are able to generate the HCl and N2O products despite problems with the HBTs
- Overall, the MLS instrument continues to perform very well

Thermal Emissions Spectral Lines and MLS Filterbank Coverage

Multiple Paths to Monitor Some Signals

Overall Instrument Status THz Module

After exceeding its lifetime requirement by 3x, the THz OH measurements are being made ~ 1 month per year to establish a long term OH trend

- THz Module Laser Local Oscillator (LLO) has remained in lock around 50% of the time on average for the 2014 measurement period; this is significantly lower than the ~80% in lock status from 2013
- Current plan is to keep the THz hardware on for ~40 days with a planned power down on around Sept. 30
- This date is subject to review pending LLO performance over the next several weeks

MLS Instrument Significant Events Oct. 2012 – Sep. 2013

SIF2 Configuration Register Corruption

- Oct. 17, 2012

Occurred in South Atlantic Anomaly (SAA)

Suspected cause: SEU

SIF2 Reconfiguration Recovery

- Oct. 25, 2012

Recovery completed by resending configuration commands to the SIF2 electronics

Band 27 Saturation Test

- Feb. 12, 2013

Test confirmed we had room to adjust the Band 6 attenuator without saturating Band 27

 Attenuator adjustment boosted Band 6 counts away from noise margin levels for at least several years

MLS Instrument Significant Events Oct. 2012 – Sep. 2013, continued

Moon Track 8 measurement

- Mar. 29, 2013
- Provides long term primary reflector stability information
- Small increases in ohmic loss have been observed but overall stability of reflector is excellent

Band 12 Substitution Test

- Apr. 22, 2013
- Diagnostic to determine area of signal chain which was causing Band 12 science counts to drop
- Suspected cause of Band 12 science count loss is an HBT transistor issue similar to Band 13

THz Module 2013 Annual Measurement

 THz laser performed better than expected in the beginning of the measurement period but exhibited an accelerated degradation in the last few days - Aug. - Sep. 2013

MLS Instrument Significant Events Oct. 2013 – Sep. 2014

SIF4 Band 12 Power Down

 Band 12 signal was degrading and was powered off after decision to use Band 3 for N2O product generation - Aug. 06, 2013

GHz Switch #4 to monitor Band 21 vs. Band 12

Moved switch to collect useful P-T data since Band 12 is off

- Sep. 16, 2013

- Sep. 16, 2013

SIF2 Configuration Register Corruption & Recovery

Occurred in South Atlantic Anomaly (SAA)

Suspected cause: SEU

 Recovery within same day after identifying this as repeat of the previous SIF2 anomaly

- Dec. 12, 2013

Band 7 Dual Monitor Test

 Diagnostic to determine area of signal chain which was causing features seen in B7 L0 plots

MLS Instrument Significant Events Oct. 2013 – Sep. 2014, continued

MLS Moon Track 9 measurement

- Mar. 18, 2014

- Provides long term primary reflector stability information
- Overall stability of reflector remains excellent
- Pressure-Temperature Dual Monitor Test
 - Additional diagnostic to determine which area of the signal chain was causing features seen in Band 7 L0 plots
- THz Module 2014 Annual Measurement
 - THz LLO performance has not been as good as last year
 - Averaging around 50% of the time in lock which is the maximum possible percentage of useful profiles; actual number of useful profiles will be less
- SIF4 Configuration Register Corruption & Recovery
 - Occurred in South Atlantic Anomaly (SAA)
 - Suspected cause: SEU
 - Recovery via reconfiguration of SIF4 electronics within hours after identifying this anomaly as being similar to the SIF2 anomalies
 - Some adverse thermal effects on Bands 10 and 29; details to follow

- Dec. 12, 2013

- Aug. - Sep. 2014

- Aug. 19, 2014

MLS AAA temperature trend

- Several occurrences of a small temperature increase (< 1 °C) have been noted in the Antenna Actuator Assembly temperature beginning in Jan. 2010
- After each event, the temperature has drifted back towards its norm
- Subsequent events appear to be more frequent but with less of a temperature excursion from the norm
- Suspected cause is slightly larger than usual wear product in the mechanism travel that is being reduced over time
- Per the CogE, the AAA felt washer "is probably just losing fibers" as is expected. "We have lots of evidence of fiber shedding from these felt washers"
- No science data impact from this "anomaly"

MLS Close Watch Trends AAA temperature; full mission trend

- The dashed yellow "guide lines" on these plots are arbitrary in value and are based on the launch and activation period
- A sudden change in any telemetry point will always draw our attention but the overall behavior of this temperature does not have us concerned

MLS Close Watch Trends R4 Master Gunn Current, Full Mission Trend

- The R4 Master Gunn current has decreased from near mission high levels over the past month
- We continue to monitor this point closely with daily text messages

MLS Close Watch Trends R4 Slave Gunn current, full mission trend

 The R4 Slave Gunn current has remained well within the nominal mission range over the past year

MLS Close Watch Trends R4 Receiver LO IF Power Monitor, full mission trend

- The MLS 640 GHz receiver (R4) LO IF power telemetry has temporarily dropped, with no apparent cause, on six occasions but has recovered each time
- There were also two small drops in 2012 that have been associated with survival mode events
- This closely monitored telemetry point has remained stable over the past 2 years
- It is believed that these drops are only an artifact in telemetry
- These drops have had no observable effect in the science data

Bands 10 and 29 (CIO and HOCI)

- Bands 10 and 29, fed from a common signal in SIF4, exhibited anomalous behavior/thermal sensitivities in 2006 leading to operational practices which minimize thermal cycling of the Band 10/29 specific hardware
- Bands 10 and 29 have remained stable from May 2006 until a recent SIF4 configuration register anomaly which occurred in August 2014
- During this anomaly, SIF4 temperatures dipped by 3 4 degrees and the anomalous behavior in Bands 10 and 29 returned
- At this point, the erratic changes in Bands 10 and 29 have subsided and the counts are trending back towards their pre anomaly values
- Bands 10 and 29 have also experienced three larger (> 30° C) temperature cycles during survival mode transitions with no adverse effects

Band 10 (CIO), full mission trend, one data set per day

Band 10 Focus: Feb. to May, 2006 One data point per day

Band 10 Focus: August 19 - 20, 2014 One data point per MAF

Band 10 Focus: Hours since August 19, 2014 One data point per MAF

Trend Updates Band 12 (N2O), full mission trend

- Band 12 specific electronics were powered down on Aug. 06 2013 after the L0 science count rate of decline had accelerated over the course of a year
- MLS N2O product is now being generated using the Band 3 N2O spectral line
- Filterbank 12 spectrometer is now being used to monitor Band 21, which covers the 118 GHz pressure-temperature line

Operational Plans

- Continue with MLS routine and calibration activities
 - AAA Reconditionings
 - Spectral Baseline updates
 - Moon Tracking Scan #10
 - March 06, 2015 23:04:03 with a yaw angle of ~0.033 deg.
- Bands 10 and 29 (CIO and HOCI)
 - Minimize thermal cycling of Bands 10 and 29 where reasonable
- Band 13 (HCI)
 - We will choose our next Band 13 measurement carefully knowing that we may only have one measurement period left
- THz Module (OH)
 - Continue current measurement through end of Sept. (tbr)
 - Next measurement in August 2015

EOS MLS Contact Information

	Office	Cell Phone	Home Phone	EMAIL Address
Dominick Miller (Operations Team Lead)	(818) 393-3564	(818) 653-7852	(661) 621-3963	dominick.miller@jpl.nasa.gov
Mario Loo (Instrument FSW and Operations Team)	(818) 354-5607	(818) 687-8107	(818) 957-7578	mario.s.loo@jpl.nasa.gov
Mehran Gangianpour (Operations Team)	(818) 354-0084	(818) 653-9013	(818) 249-4525	mehran.gangianpour@jpl.nasa.gov
Robert Jarnot (Instrument Scientist)	(818) 354-5204	(818) 653-9266	N/A	robert.f.jarnot@jpl.nasa.gov
Rick Cofield (MLS FOV Scientist)	(818) 354-2501	N/A	N/A	rick.cofield@jpl.nasa.gov
Elmain Martinez (Project Manager)	(818) 354-4053	(626) 429-9250	(818) 353-8775	elmain.martinez@jpl.nasa.gov
Nathaniel Livesey (Principal Investigator)	(818) 354-4214	(818) 219-6394	N/A	nathaniel.j.livesey@jpl.nasa.gov

Backup Slides

Trend Updates Band 13 (HCI)

- Band 13 was powered off in 2006 to conserve life due to a suspected
 HBT (transistor) issue and Band 14 has since been used to measure HCI
- Spot check measurements of Band 14 HCl were made using Band 13 in January of 2009 and 2010
- During the last measurement Band 13 exhibited signs which suggest that it is close to its end of life
- We will choose our next Band 13 measurement carefully knowing that we may only have one measurement period left

Trend Updates

Band 32 (Temperature and Pressure), April – May 2009

- -Band 32 Channels 3 and 4 have shown erratic behavior on 2 occasions
- -During the second occasion (shown below), commands were sent to locate and isolate the anomalous hardware
- -Band 32 has remained stable since May 2009

Trend Updates Band 32 Channels 3 and 4 Full mission trend

Longevity Concerns

Spectrometer Module

S NA

- The Band 27 Saturation Test confirmed we had room to adjust the Band 6 attenuator without saturating Band 27
- Attenuator adjustment boosted Band 6 counts away from noise margin levels for at least several years

The potential tradeoff decision listed below is no longer necessary

- Band 6 and Band 27 share a common signal source
 - Band 6 signal levels have been decreasing slowly (due to voltage regulator issue) while Band 27 has held steady
 - We have sufficient attenuation adjustment available to boost Band 6 levels as needed, but, boosting Band 6 will also boost Band 27 and may cause it to enter saturation levels
 - Based on current trends, we have ~ 6 months to 1 year before a few channels in Band 6 reach minimal levels and a Band 6/ Band 27 tradeoff decision may be necessary

Longevity Concerns

Spectrometer Module

The magnitude of many science signals from the spectrometer module have been decreasing slowly since launch due to a known issue with a certain batch of voltage regulators

- Existing test data on these components is insufficient to project remaining life.
- While we are aware of this performance degradation, none of the more than 5 dozen of these parts have failed since launch
- Current gain settings are good for the foreseeable future